BOSTON
UNIVERSITY

Lecture O7Db
Initialization

DLADS — Spring 2024

https://udlbook.github.io/udlbook/

=== Foundational Concepts ===
v 02 -- Supervised learning refresher
W h e re We a re v 03 -- Shallow networks and their representation capacity
v 04 -- Deep networks and depth efficiency
v" 05 -- Loss function in terms of maximizing likelihoods
v 06 — Fitting models with different optimizers
v 07a — Gradients on deep models and backpropagation

I:> * 07b —Initialization to avoid vanishing and exploding weights &
gradients

* 08 — Measuring performance, test sets, overfitting and double
descent

* (09 — Regularization to improve fitting on test sets and unseen data
=== Network Architectures and Applications ===

o 2z e 10— Convolutional Networks

11 — Residual Networks

12 — Transformers

Large Language and other Foundational Models

Generative Models

Graph Neural Networks

Agenda

* Finish Adam optimizer from lecture 06 — Fitting Models
* Quick tips on how to read a research paper
* Model Initialization

Model Initialization

* The need for weights initialization
* Expectations Refresher
* The He (Kaiming) Initialization

Initialization

* Consider standard building block of NN in terms of pre-activations:
tr, = By + Qrhy
— /Bk; T Qka[fk—l]

* How do we initialize the biases and weights?

* Equivalent to choosing starting point in our gradient descent searches

Forward Pass

* Consider standard building block of NN in terms of pre-activations:

fk — ,3 LT () L hk Normal Distrbutions, o

— /Bk T ﬂka[fk—l]

/Bk:O

* Set weights to be normally distributed

e Set all the biasesto O

Variance = 100

* meanO0

—————————

* variance 0522

* What will happen as we move through the network if aé is very small?
 What will happen as we move through the network if 05-21 is very large?

Backward Pass

oY, o¢,
= I[fi_ Qr
T [’”>0]®(kafk>’

1.0 A

 What will happen as we propagate backwards
through the network if 0522 is very small?

o
o

Probability Density

 What will happen as we propagate backwards
through the network if 0522 is very large?

I
'S

0.2 1

0.0 1

ke{K,K—-1,...1}

(7.13)

Normal Distributions, 03

0.8 1

—— Variance =

0.5

—— Variance = 100

=20

-15

-10

10

15

20

Initialize weights to different variances

a) 10100 Forward pass b) 1100 Backward pass
100D Input — <— Exploding gradients
~N(0,1) Ol s B
mgl 0 °)
) . =] N%lo ___________________ T Em—
0.01 B B e .y .
, | <—— Vanishing gradients
10—100 S — — 10100 S — —
0 25 50 0.0 25 50
Laver, k Laver, k

Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers
and Dy, = 100 hidden units per layer. The network has a 100 dimensional input x
initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices 2 are initialized with a normal distribution
with mean zero and five different variances o, € {0.001,0.01,0.02,0.1,1.0}. a)

How do we initialize weights to keep variance
stable across layers?

Aim: keep variance same between two layers

f' =034+ Qh
h = alf|,

Definition of variance:

of, = E[(fi — E[f{D?]

Agenda

* The need for weights initialization

* The He (Kaiming) Initialization

Expectations

E[slel] = [elelPr(z)ds,

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

E{g[m]} ~ % Z glz*] where xr. ~ Pr(z)

n=1

Common Expectation Functions

Function g|e] Expectation
57 mean, [
o kth moment about zero
(x — p)* kth moment about the mean
(x — p)? variance
(z — p)° skew
(x — p)* kurtosis

Table B.1 Special cases of expectation. For some functions g[x], the expectation
E[g[x] is given a special name. Here we use the notation p, to represent the mean
with respect to random variable .

Rules for manipulating expectation

+ g[x =3 fa: + K {g[m]}

E[f[x]g[yj' :E_f:x:_E[g[y]} if z,y independent

Agenda

* The need for weights initialization
* Expectations Refresher
* The He (Kaiming) Initialization

Aim: keep variance same between two layers

h = alf|,
f' =3+ Qh

Definition of variance:

0% = E[(f, — E[f/])?]

Now let’s prove:

Keeping in mind:

Rule 1: I k: =k
Rule 2:]E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[m] + g[x] =
Def'n Elz] = p

(x — p?)] = Elz? — 2zp + 4]

Rule 1: BlR =
Rule 2: E[k glz]] = k'E[g[ﬂvﬂ
Rule 3: E[f[:{:] —|—g[a¢]: =]E[f[x]} —|—E[g[az]}
Def’n Elx] = u
2 S ..2 2
(z —p%)] =Elz” = 2zp + p°)

2% — E[2zp] + B

Rule 1: I k: =k
Rule 2: E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[w] + g[x] =
Def'n Elx] = p

(z — p?)] = E[z? — 2zp + p?]

= Elz?] — E[2zpu] + E[u
= E[z?] — 2uE[z] + p*

Rule 1: I k: =k
Rule 2: E[k glz]| =k E[g[ﬂv]}

Rule 3: E[f[w] + g[x] =
Def'n Elx] = p

(z — p?)] = E[z? — 2zp + p?]

— B[] — El2e] + B[
— 43:552: — 2uE|x| + ,LLQ
= E[z?] — 21 + p°

Rule 2:

Rule 3: E[f[w] + g[x]

Rule 1: E|k| =k

E|k-gla]| = k- E|gle]]

Elz] = p

et
(z — p*)] = E[z* — 2zp 4 p°]
_ E[2?] - E[2uy] + B[]
= B[] — 2uB[e] + 2
= Ef2”] — 24" + 7
=E[”] — 47

Rule 2:

Rule 3: E[f[w] + g[x]

Rule 1: Elk| =k

E|k-gla]| = k- E|gle]]

Elz] = p

Def’n
(z — p*)] = E[z* — 2zp 4 p°]
= E[z°] — E[2zp] + E[p”]
= E[z°] — 2uE[x] + p°
= E[z°] — 2p* +
= E[2"] — p°
= E[z?] — Elz]*

Aim: keep variance same between two layers

f' =034+ Qh
h = alf|,

of, = E[(fi — E[f{D?]

of, = E[f{*| - EIf{]?

[(2 — p)?]

Aim: keep variance same between two layers

f' =034+ Qh
h = alf|,

of, = E[(fi — E[f{D?]

of, = E[f*] <EIFT;

Aim: keep variance same between two layers

f' =034+ Qh

Consider the mean of the pre-activations:

Dy
E[ff]=E |8+) Qijh;
j=1

Rule 1: Elk] =Fk
Rule2: E|k-gla]| = k- E[gla]]
Rule 3: E[ffa] + gle]| = E[flz] + E[gfal]
Rule 4 E[f[:c]gy :Ef[x]E[g[y]] if x,y independent
Dy,
E[f{] =E |8+) Qijh;
j=1

=K 8] + zh:E 2505

71=1

Rule 1: Blk] =k
Rule 2 k- gfa]| = k- E[ge]]
Rule3: E [f[x] +glz]| =FE :f[:z:]: +E [g[aﬁ]]
Rule 4 fzlgly)| =E|fz]|Elgly)| i 2,y independent
.]
Elf;] =E 5¢+Zﬂijhg’
j=1

Rule 1: Bk =Fk

Rule 2 E[k gle]| =k E[g[w]}

Rule 3 E[f[x] +gla]| = E f[x]: +E[g[a¢]]

Rule 4: E[f[x]g:y:: :E:f[;c]:E[g[y]] if x,y independent

Set all the biasesto 0 Dy,

Weights normally distributed
mean O Dy,

variance 0§ =0+ Z 0-Elhj]=0

Aim: keep variance same between two layers

f' =034+ Qh
h = alf|,

of, = E[(fi — E[f{D?]

o, = B1fi"] - BY(P = B[

0

f[x]gjyj: :E_f[x]:E[g[y]] if ,y independent

Set all the biasesto 0

Weights normally distributed
mean O

variance 0§

f[x]gjyj: :E_f[x]:E[g[y]] if ,y independent

Dy, 2
=E || 8+ Z Qijih; —0
j=1
_ 0 -
Dy,
—F (Z Quh;
Set all the biases to 0 _ =1 i

Weights normally distributed
mean O

variance 0

Set all the biasesto 0

Weights normally distributed
mean O

variance 0§

squared terms are left, then

Rule 1: e
Rule2: E|k-gla]| = k- E[gla]]
Rule3: E [fm +glz]| = E|flz]] + E[g[w]]
Rule 4: E [f[x]gy —FE f[x] E [g[y]} if x,y independent
ot = E[f"] - E[f;]*
_ -
Dy,
=E |[Bi+) Qyh;| | =0
j=1
Dy, For all the cross terms,
=K Z Qijhj -— E[Qi]-] = 0 so only the
j=1
- / use independence.
Dy
- ZE [ij} I [h?
j=1

fpjggzizzlE_ﬂx{IE[ghﬂ} if ,y independent

D, 2
— E 5@ + Z sz h/j — O
Jj=1
- .
Dy,
=E |) Qijhy
Set all the biases to 0 j=1
D
. - E (021 E [12 Because the ()’s are zero
Weights normally distributed _ [ij} []] mean, this is the
mean 0 g=1 / variance.
variance g§ Dy, Dy,
2 2 2 2

0]2c, = 0?2 ZE [h?]

Dy

Jj=1
Dy,

04 > E[ReLU[f;]?]

j=1

Dy, 00

%> [ReLULPr(s)df; -
2|
th 00

03y / (I1f; > 0£,)2 Pr(f;)df,
j=17/—0°

Dy, 00
o2 g /O P2Pr(f)df,

2

QZU‘f

DhO'QCTf

<

From the definition of expectation.

Only positive integral limits
because of ReLU

% of the variance for zero mean
distribution

Aim: keep variance same between two layers

Since:

Should choose:

2
O'Q —
Dy,
To get:
2 _ 2
O'f, = O'f
This is called or

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” Proc. IEEE International Conference on
Computer Vision, 2015, pp. 1026—-1034. Accessed: Feb. 11, 2024.

He initialization (assumes RelLU)

* Forward pass: want the variance of hidden unit activations in layer
k+1 to be the same as variance of activations in layer k:

o 2
O-Q — D < Number of units at layer k
h

* Backward pass: want the variance of gradients at layer k to be the
same as variance of gradient in layer k+1:

2

0'522 — < Number of units at layer k+1

Dy

a) 1100 Forward pass b) 1100 Backward pass
0.1 I <— Exploding gradients
NE 0
5 10
<—— Vanishing gradients
o
10—100 10—100
0 25 50 0.0 25 50
Layer, k Layer, k
Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers -0'2 — 2 — — 0.02
and Dy = 100 hidden units per layer. The network has a 100 dimensional input x &2 D, 100 .

initialized with values from a standard normal distribution, a single output fixed
at y = 0, and a least squares loss function. The bias vectors 3, are initialized
to zero and the weight matrices €2; are initialized with a normal distribution
with mean zero and five different variances og € {0.001,0.01,0.02,0.1,1.0}. a)

Default Initialization in PyTorch

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming uniform

torch.nn.init.kaiming_uniform_(tensor, a=0, mode="fan_in', nonlinearity="'leaky_relu',
generator=None) [SOURCE]

Fill the input Tensor with values using a Kaiming uniform distribution.

The method is described in Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification -
He, K. et al. (2015). The resulting tensor will have values sampled from U (—bound, bound) where

bound = gain x \! ;

| fan_mode

Also known as He initialization.

https://pytorch.org/docs/stable/nn.init.html

Feedback?

