

Lecture 07b Initialization

DL4DS – Spring 2024

Where we are

=== Foundational Concepts ===

- √ 02 -- Supervised learning refresher
- ✓ 03 -- Shallow networks and their representation capacity
- ✓ 04 -- Deep networks and depth efficiency
- ✓ 05 -- Loss function in terms of maximizing likelihoods
- ✓ 06 Fitting models with different optimizers
- ✓ 07a Gradients on deep models and backpropagation
- 07b Initialization to avoid vanishing and exploding weights & gradients
- 08 Measuring performance, test sets, overfitting and double descent
- 09 Regularization to improve fitting on test sets and unseen data

=== Network Architectures and Applications ===

- 10 Convolutional Networks
- 11 Residual Networks
- 12 Transformers
- Large Language and other Foundational Models
- Generative Models
- Graph Neural Networks
- ...

Agenda

- Finish Adam optimizer from lecture 06 Fitting Models
- Quick tips on how to read a research paper
- Model Initialization

Model Initialization

- The need for weights initialization
- Expectations Refresher
- The He (Kaiming) Initialization

Initialization

Consider standard building block of NN in terms of pre-activations:

$$\mathbf{f}_k = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{h}_k \ = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{a}[\mathbf{f}_{k-1}]$$

- How do we initialize the biases and weights?
- Equivalent to choosing starting point in our gradient descent searches

Forward Pass

Consider standard building block of NN in terms of pre-activations:

$$\mathbf{f}_k = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{h}_k \ = oldsymbol{eta}_k + oldsymbol{\Omega}_k \mathbf{a}[\mathbf{f}_{k-1}]$$

Set all the biases to 0

$$\boldsymbol{eta}_k = \mathbf{0}$$

- Set weights to be normally distributed
 - mean 0
 - variance σ_0^2

- What will happen as we move through the network if σ_{Ω}^2 is very small?
- What will happen as we move through the network if σ_{Ω}^2 is very large?

Backward Pass

$$\frac{\partial \ell_i}{\partial \mathbf{f}_{k-1}} = \mathbb{I}[\mathbf{f}_{k-1} > 0] \odot \left(\mathbf{\Omega}_k^T \frac{\partial \ell_i}{\partial \mathbf{f}_k}\right), \qquad k \in \{K, K-1, \dots 1\}$$
 (7.13)

- What will happen as we propagate backwards through the network if σ_{Ω}^2 is very small?
- What will happen as we propagate backwards through the network if σ_{Ω}^2 is very large?

Initialize weights to different variances

Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers and $D_h = 100$ hidden units per layer. The network has a 100 dimensional input \mathbf{x} initialized with values from a standard normal distribution, a single output fixed at y = 0, and a least squares loss function. The bias vectors $\boldsymbol{\beta}_k$ are initialized to zero and the weight matrices Ω_k are initialized with a normal distribution with mean zero and five different variances $\sigma_{\Omega}^2 \in \{0.001, 0.01, 0.02, 0.1, 1.0\}$. a)

How do we initialize weights to keep variance stable across layers?

$$\mathbf{f}' = oldsymbol{eta} + \mathbf{\Omega} \mathbf{h} \ \mathbf{h} = \mathbf{a}[\mathbf{f}],$$

Definition of variance:

$$\sigma_{f'}^2 = \mathbb{E}[(f_i' - \mathbb{E}[f_i'])^2]$$

Agenda

- The need for weights initialization
- Expectations Refresher
- The He (Kaiming) Initialization

Expectations

$$\mathbb{E}\left[g[x]\right] = \int g[x]Pr(x)dx,$$

Interpretation: what is the average value of g[x] when taking into account the probability of x?

Consider discrete case and assume uniform probability so calculating g[x] reduces to taking average:

$$\mathbb{E}\left[g[x]\right] \approx \frac{1}{N} \sum_{n=1}^{N} g[x_n^*]$$
 where $x_n^* \sim Pr(x)$

Common Expectation Functions

Function $g[\bullet]$	Expectation
x	mean, μ
x^k	kth moment about zero
$(x-\mu)^k$	kth moment about the mean
$(x-\mu)^2$	variance
$(x-\mu)^3$	skew
$(x-\mu)^4$	kurtosis

Table B.1 Special cases of expectation. For some functions g[x], the expectation $\mathbb{E}[g[x]]$ is given a special name. Here we use the notation μ_x to represent the mean with respect to random variable x.

Rules for manipulating expectation

$$\mathbb{E}\left[k\right] = k$$

$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$

$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$

$$\mathbb{E}\left[\mathbf{f}[x]g[y]\right] = \mathbb{E}\left[\mathbf{f}[x]\right]\mathbb{E}\left[\mathbf{g}[y]\right] \quad \text{if} \quad x, y \quad \text{independent}$$

Agenda

- The need for weights initialization
- Expectations Refresher
- The He (Kaiming) Initialization

$$\mathbf{h} = \mathbf{a}[\mathbf{f}], \ \mathbf{f}' = oldsymbol{eta} + oldsymbol{\Omega} \mathbf{h}$$

Definition of variance:

$$\sigma_{f_i'}^2 = \mathbb{E}[(f_i' - \mathbb{E}[f_i'])^2]$$

Now let's prove:

$$\mathbb{E}\left[(x-\mu)^2\right] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

Keeping in mind:

$$\mathbb{E}[x] = \mu$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$
$$= \mathbb{E}[x^2] - \mathbb{E}[2x\mu] + \mathbb{E}[\mu^2]$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

$$= \mathbb{E}[x^2] - \mathbb{E}[2x\mu] + \mathbb{E}[\mu^2]$$

$$= \mathbb{E}[x^2] - 2\mu\mathbb{E}[x] + \mu^2$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

$$= \mathbb{E}[x^2] - \mathbb{E}[2x\mu] + \mathbb{E}[\mu^2]$$

$$= \mathbb{E}[x^2] - 2\mu\mathbb{E}[x] + \mu^2$$

$$= \mathbb{E}[x^2] - 2\mu^2 + \mu^2$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

$$= \mathbb{E}[x^2] - \mathbb{E}[2x\mu] + \mathbb{E}[\mu^2]$$

$$= \mathbb{E}[x^2] - 2\mu\mathbb{E}[x] + \mu^2$$

$$= \mathbb{E}[x^2] - 2\mu^2 + \mu^2$$

$$= \mathbb{E}[x^2] - \mu^2$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Def'n
$$\mathbb{E}[x] = \mu$$

$$\mathbb{E}[(x - \mu^2)] = \mathbb{E}[x^2 - 2x\mu + \mu^2]$$

$$= \mathbb{E}[x^2] - \mathbb{E}[2x\mu] + \mathbb{E}[\mu^2]$$

$$= \mathbb{E}[x^2] - 2\mu\mathbb{E}[x] + \mu^2$$

$$= \mathbb{E}[x^2] - 2\mu^2 + \mu^2$$

$$= \mathbb{E}[x^2] - \mu^2$$

$$= \mathbb{E}[x^2] - E[x]^2$$

$$\mathbf{f}' = oldsymbol{eta} + \mathbf{\Omega} \mathbf{h} \ \mathbf{h} = \mathbf{a}[\mathbf{f}],$$

$$\sigma_{f'}^2 = \mathbb{E}[(f_i' - \mathbb{E}[f_i'])^2]$$

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$\longrightarrow \mathbb{E}\left[(x-\mu)^2\right] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

$$\mathbf{f}' = oldsymbol{eta} + \mathbf{\Omega} \mathbf{h} \ \mathbf{h} = \mathbf{a}[\mathbf{f}],$$

$$\sigma_{f'}^2 = \mathbb{E}[(f_i' - \mathbb{E}[f_i'])^2]$$

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$\mathbf{f}' = oldsymbol{eta} + \mathbf{\Omega}\mathbf{h}$$

Consider the mean of the pre-activations:

$$\mathbb{E}[f_i'] = \mathbb{E} \left| \beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j \right|$$

Rule 1:
$$\mathbb{E}ig[kig]=k$$

Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$

Rule 3:
$$\mathbb{E}\left[f[x] + g[x]\right] = \mathbb{E}\left[f[x]\right] + \mathbb{E}\left[g[x]\right]$$

Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big]$$
 if x,y independent

$$\mathbb{E}[f_i'] = \mathbb{E}\left[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right]$$
$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij} h_j\right]$$

Rule 1:
$$\mathbb{E}ig[kig]=k$$

Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$

Rule 3:
$$\mathbb{E}\Big[f[x] + g[x]\Big] = \mathbb{E}\Big[f[x]\Big] + \mathbb{E}\Big[g[x]\Big]$$

Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big]$$
 if x,y independent

$$\mathbb{E}[f_i'] = \mathbb{E}\left[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}\right] \mathbb{E}\left[h_j\right]$$

Rule 1:
$$\mathbb{E}ig[kig] = k$$

Rule 2: $\mathbb{E}ig[k\cdot \mathrm{g}[x]ig] = k\cdot \mathbb{E}ig[\mathrm{g}[x]ig]$

Rule 3:
$$\mathbb{E}\Big[f[x] + g[x]\Big] = \mathbb{E}\Big[f[x]\Big] + \mathbb{E}\Big[g[x]\Big]$$

Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big]$$
 if x,y independent

$$\mathbb{E}[f_i'] = \mathbb{E}\left[\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}h_j\right]$$

$$= \mathbb{E}\left[\beta_i\right] + \sum_{j=1}^{D_h} \mathbb{E}\left[\Omega_{ij}\right] \mathbb{E}\left[h_j\right]$$

$$= 0 + \sum_{j=1}^{D_h} 0 \cdot \mathbb{E}[h_j] = 0$$

Set all the biases to 0

$$\mathbf{f}' = oldsymbol{eta} + \mathbf{\Omega} \mathbf{h} \ \mathbf{h} = \mathbf{a}[\mathbf{f}],$$

$$\sigma_{f'}^2 = \mathbb{E}[(f_i' - \mathbb{E}[f_i'])^2]$$

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2 = \mathbb{E}[f_i'^2]$$

Rule 1:
$$\mathbb{E}\left[k\right] = k$$
 Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 3:
$$\mathbb{E}\left[\mathbf{f}[x] + \mathbf{g}[x]\right] = \mathbb{E}\left[\mathbf{f}[x]\right] + \mathbb{E}\left[\mathbf{g}[x]\right]$$
 Rule 4:
$$\mathbb{E}\left[\mathbf{f}[x]g[y]\right] = \mathbb{E}\left[\mathbf{f}[x]\right]\mathbb{E}\left[\mathbf{g}[y]\right]$$
 if x, y independent

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$= \mathbb{E}\left[\left(\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right] - 0$$

Set all the biases to 0

Rule 1:
$$\mathbb{E}[k] = k$$

Rule 2:
$$\mathbb{E}\left[k \cdot \mathbf{g}[x]\right] = k \cdot \mathbb{E}\left[\mathbf{g}[x]\right]$$

Rule 3:
$$\mathbb{E}\Big[f[x] + g[x]\Big] = \mathbb{E}\Big[f[x]\Big] + \mathbb{E}\Big[g[x]\Big]$$

Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big]$$
 if x,y independent

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$= \mathbb{E}\left[\left(\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right] - 0$$

$$= \mathbb{E}\left[\left(\sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right]$$

Set all the biases to 0

Rule 1:
$$\mathbb{E}\left|k\right|=k$$

Rule 2:
$$\mathbb{E}\Big[k\cdot \mathbf{g}[x]\Big] = k\cdot \mathbb{E}\Big[\mathbf{g}[x]\Big]$$

Rule 3:
$$\mathbb{E}\left[f[x] + g[x]\right] = \mathbb{E}\left[f[x]\right] + \mathbb{E}\left[g[x]\right]$$

Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big]$$
 if x,y independent

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$= \mathbb{E}\left[\left(\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right] - 0$$

$$= \mathbb{E}\left[\left(\sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right]$$

$$= \sum_{i=1}^{D_h} \mathbb{E}\left[\Omega_{ij}^2\right] \mathbb{E}\left[h_j^2\right]$$

For all the cross terms, $E\left[\Omega_{ij}\right]=0$ so only the squared terms are left, then use independence.

Set all the biases to 0

Rule 1:
$$\mathbb{E}\Big[k\Big] = k$$
 Rule 2:
$$\mathbb{E}\Big[k \cdot \mathrm{g}[x]\Big] = k \cdot \mathbb{E}\Big[\mathrm{g}[x]\Big]$$
 Rule 3:
$$\mathbb{E}\Big[\mathrm{f}[x] + \mathrm{g}[x]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big] + \mathbb{E}\Big[\mathrm{g}[x]\Big]$$
 Rule 4:
$$\mathbb{E}\Big[\mathrm{f}[x]g[y]\Big] = \mathbb{E}\Big[\mathrm{f}[x]\Big]\mathbb{E}\Big[\mathrm{g}[y]\Big] \quad \text{if} \quad x,y \quad \text{independent}$$

$$\sigma_{f'}^2 = \mathbb{E}[f_i'^2] - \mathbb{E}[f_i']^2$$

$$= \mathbb{E}\left[\left(\beta_i + \sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right] - 0$$

$$= \mathbb{E}\left[\left(\sum_{j=1}^{D_h} \Omega_{ij} h_j\right)^2\right]$$

Set all the biases to 0

Weights normally distributed mean 0 variance σ_{Ω}^2

$$\begin{split} &= \sum_{j=1}^{D_h} \mathbb{E} \left[\Omega_{ij}^2 \right] \mathbb{E} \left[h_j^2 \right] \\ &= \sum_{j=1}^{D_h} \sigma_{\Omega}^2 \mathbb{E} \left[h_j^2 \right] = \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \mathbb{E} \left[h_j^2 \right] \end{split}$$

Because the Ω 's are zero mean, this is the variance.

$$\sigma_{f'}^2 = \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \mathbb{E}\left[h_j^2\right]$$

$$= \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \mathbb{E} \left[\text{ReLU}[f_j]^2 \right]$$

$$= \sigma_{\Omega}^2 \sum_{i=1}^{D_h} \int_{-\infty}^{\infty} \text{ReLU}[f_j]^2 Pr(f_j) df_j$$

From the definition of expectation.

$$= \sigma_{\Omega}^2 \sum_{j=1}^{D_h} \int_{-\infty}^{\infty} (\mathbb{I}[f_j > 0]f_j)^2 Pr(f_j) df_j$$

$$= \sigma_{\Omega}^2 \sum_{i=1}^{D_h} \int_0^\infty f_j^2 Pr(f_j) df_j$$

$$= \sigma_{\Omega}^2 \sum_{i=1}^{D_h} \frac{\sigma_f^2}{2} = \frac{D_h \sigma_{\Omega}^2 \sigma_f^2}{2}$$

½ of the variance for zero mean distribution

Since:

$$\sigma_{f'}^2 = \frac{D_h \sigma_{\Omega}^2 \sigma_f^2}{2}$$

Should choose:

$$\sigma_{\Omega}^2 = \frac{2}{D_h}$$

To get:

$$\sigma_{f'}^2 = \sigma_f^2$$

This is called He initialization or Kaiming initialization.

He initialization (assumes ReLU)

• Forward pass: want the variance of hidden unit activations in layer k+1 to be the same as variance of activations in layer k:

$$\sigma_{\Omega}^2 = rac{2}{D_h}$$
 Number of units at layer k

• Backward pass: want the variance of gradients at layer k to be the same as variance of gradient in layer k+1:

$$\sigma_{\Omega}^2 = rac{2}{D_{h'}}$$
 Number of units at layer k+1

Figure 7.4 Weight initialization. Consider a deep network with 50 hidden layers and $D_h = 100$ hidden units per layer. The network has a 100 dimensional input \mathbf{x} initialized with values from a standard normal distribution, a single output fixed at y = 0, and a least squares loss function. The bias vectors $\boldsymbol{\beta}_k$ are initialized to zero and the weight matrices Ω_k are initialized with a normal distribution with mean zero and five different variances $\sigma_{\Omega}^2 \in \{0.001, 0.01, 0.02, 0.1, 1.0\}$. a)

$$\sigma_{\Omega}^2 = \frac{2}{D_h} = \frac{2}{100} = 0.02$$

Default Initialization in PyTorch

https://pytorch.org/docs/stable/nn.init.html#torch.nn.init.kaiming_uniform_

torch.nn.init.kaiming_uniform_(tensor, a=0, mode='fan_in', nonlinearity='leaky_relu', generator=None) [SOURCE]

Fill the input Tensor with values using a Kaiming uniform distribution.

The method is described in *Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification* - He, K. et al. (2015). The resulting tensor will have values sampled from $\mathcal{U}(-\text{bound}, \text{bound})$ where

$$\mathrm{bound} = \mathrm{gain} imes \sqrt{rac{3}{\mathrm{fan_mode}}}$$

Also known as He initialization.

Feedback?

